Countability

$$N, Z, Q, IR - infinite Sets$$

(ardinality of mfinite Sets
(ardinality of mfinite Sets
Recall shat two sets A and B have same cardinality
iff there is a by ection from A to B.
example) N and Z have same cardinality
 $f: N \rightarrow Z$ a by ection
 $f(n) = n/2$ when n even $\rightarrow \{0, 1, 2, 3, ..., 3\}$
 $f(n) = -(n+1)/2$ when n odd. $\rightarrow \{-1, -2, -3, ..., 3\}$
Since f is a by ection, $[N] = [Z]$
An infinite set A is countably infinite iff there is a by ection
from N to A. J p serve as an index.
Similarly (Z to A)
Fruite Sets are also countable (e.g., [0, 4])

Cantor Schweder Bernstein Theorem:

$$|A| \leq |B|$$
 iff there exists a one-to-one function from $A \neq B$.
if $f:A \neg B$ one to one $\neg |A| \leq |B|$ } $|A| = |B|$
if $g:B \neg A$ one to one $\neg |B| \leq |A|$ }

Q³¹⁰ is countrably infinite